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1.  Introduction   
 

           First of all, Bateman [1] has introduced and studied Burgers equation and 

also shown that the equation is worth to study. But after its first introduction by 

Bateman, the equation has been widely studied in detail by Burgers in [2,3] as a 

mathematical model for turbulence and therefore the equation has been widely 

known with his name. The equations has been so fundamental in engineering and 

other scientific fields that it has found many applications in such diverse fields of 

science as convection and diffusion, number theory, gas dynamics, heat 

conduction, elasticity etc. [17]. Today, it still preserves its place and importance in 

the literature due to its accurate modeling of many physical phenomena. 

The one-dimensional generalized Burgers equation is given in the form of 

0,,0  tbxauuuu xxx

p

t   

where  u=u(x,t)  is a function of the space and time variables respectively denoting 

the velocity,    denotes a positive constant showing the kinematic viscosity of the 

fluid, and  p  denotes a positive parameter. If we choose p=1 and p=2 we get 

Burgers equation and modified Burgers equation, respectively. 

         In the past a few years, many authors have tried several schemes and 

techniques in order to obtain both the analytical and numerical solutions of the 

equation. Among others, Benton and Platzman [4] have obtained its analytical 

solution; Miller [miller] has derived infinite series solutions of the problem. As for 

the numerical ones, among many other studies conducted in the literature, Dag et 
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al. have used B-spline collocation methods for numerical solutions of the Burgers 

equation, (see [8] and the references therein). 

In this paper, a variation form of the Burgers equation is going to be taken into 

consideration that is the modified Burgers equation, presented in the form of  

bxauuuu xxxt  ,02  ,                             (1) 

here u(x,t)  denotes the dependent variable,    denotes the viscosity parameter, and    

t and x denote the independent parameters, namely time and space, respectively. 

In this paper we aim to apply the finite difference methods in order to build a 

numerical method for the numerical solutions of the modified Burgers equation. 

Several authors have tried to solve Eq.  (1)  both analytically and numerically using 

various schemes. As for the numerical one, among others available in the literature, 

Ramadan and El-Danaf [14] have solved the problem by using the collocation 

method with quintic splines. After that, the same equation has been numerically 

solved by Ramadan et al. [15] using the collocation method but now with septic 

splines. The Burgers and modified Burgers equations have been solved by Saka 

and Dag [18] with the application of time and space splitting techniques and then 

employed the quintic B-spline collocation procedure to approximate the resulting 

systems. Irk [11] has employed Crank-Nicolson central differencing scheme for the 

time integration and sextic B-spline functions for the space integration to the 

modified and time splitted modified Burgers equation. A numerical solution has 

been proposed by Temsah [19] for the convection-diffusion equation using El-

Gendi method with interface points and then numerical results for Burgers and 

modified Burgers equations have been shown. Grienwank and El-Danaf [12] have 

proposed a non-polynomial spline based method to obtain numerical solutions of 

the non-linear modified Burgers equation. Bratsos [5] has used a finite-difference 

scheme based on rational approximations to the matrix-exponential term in a two-

time level recurrence relation for the numerical solution of the modified Burgers 

equation. Bratsos [6] has presented a finite-difference scheme based on fourth-

order rational approximants to the matrix-exponential term in a two-time level 

recurrence relation for the numerical solution of the modified Burgers equation. 

Bratsos and Petrakis [7] have used an explicit finite difference scheme based on 

second-order rational approximations to the matrix-exponential term for the 

numerical solution of the modified Burgers equation. The equation has been 

numerically solved by Roshan and Bhamra [16] by the Petrov-Galerkin method 

using a linear hat function as the trial function and a cubic B-spline function as the 

test function. 

            During the solution process of the numerical example, the boundary 

conditions related to Eq.  (1)  are going to be 

.,),(,),( 021 tttbutau    

The accuracy of the present method with the first and second linearization 

techniques is going to be tested using a numerical example and their stability 

analysis is investigated separately. 
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The layout of the present paper is as follow. In Section 2, the fundamentals of the 

finite difference method have been explained. In sections 3 and 4, two different 

linearization techniques have been applied to modified Burgers equations. In 

Section 5, the stability analysis of the method has been discussed. In Section 6, 

numerical examples have been presented to illustrate the application of the 

proposed method. The conclusion is given in Section 7 by summarizing the method 

and its numerical results. 
 

2.    The finite difference method 

 

In order to obtain numerical solutions, the solution region of the problem  

R=[a,b]x[t0]  together with its boundary   R   composed of points  x=a  and  x=b  

and  t=t0  is covered by  M  equal subintervals of length  h=(b-a)/M  by the line  

xm=a+mh,  m=0 (1) M  and time  tt0  is incremented in steps of size  k  by the line 

tn=t0+nk,  n=0(1)N.  For the numerical solution of  Eq.  (1)  at a given mesh point 

(mh , nk)   is going to be replaced by  u(mh,nk)  and its approximating difference 

scheme is going to be replaced by  Um
n

 . 

Substituting the dependent variable and its derivatives with their 

approximated values by the finite difference approximation and then applying Eq.  

(1)  at each mesh point of the region result in either a single explicit equation or a 

system of difference equations generally written in a matrix-vector form. However, 

when it is applied to non-linear problems, it generally results in non-linear system 

of equations and those systems might not be solved directly. Thus, to overcome 

this inconvenience an appropriate numerical algorithm is used to solve those 

systems. 
 

Linearization I: 

If we use the forward difference approximation in place of  ut and the weighted 

central difference approximation in place of  uxx  in Eq.  (1)  at each mesh point 

denoted by  (m,n+1),  

,
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respectively, and finally apply the following linearization technique in place of the 
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we simply result in the following system of algebraic equations 
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The Eq.  (2)  will be solved with the usage of a proper algorithm for those values of  

 (=0,1/2,1).    

 

Linearization II: 

If we use the forward difference approximation in place of  ut  and the 

weighted central difference approximation in place of  uxx  in Eq.  (1)  at each mesh 

point denoted by  (m,n+1),  
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respectively, and then apply the following linearization technique in place of the 

non-linear term  u2ux 
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we simply result in the following system of algebraic equations 
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The Eq. (3) will be solved using a proper algorithm for those values of   

(=0,1/2,1).       

 

 



PROCEEDINGS OF  IAM, V.5, N.2, 2016 

 

 188 

3.   Stability analysis 

 

Following the Fourier method of analyzing stability and using  
q   as the 

amplication factor, the growth factor of a typical Fourier mode can be described as:  
qphin

m eU                             (4) 

where  1i  . To proceed inspecting the stability of the numerical scheme, 

the nonlinear term  u2ux   in the modified Burgers equation is linearized by 

assuming the quantity u2 as a local constant. In that case, the nonlinear term in the 

equation changes into xuÛ  and thus the Eq.  (1)  becomes  

0ˆ  xxxt uuUu  .           

If the weighted average approximation is taken as follows 
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If we substitute the Fourier mode  (4)  into this linearized recursive relationship, 

then   (6)  yields  

idc
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It is time to investigate three different conditions of .  If we take: 
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 =0 , then it coincides with explicit method, and it is required to satisfy the 

following inequality for the stability condition 

0sinˆ)cos22( 222224   Ukhkkhh  

 =1 , then it corresponds to implicit method, and it is required to satisfy the 

following inequality for the system to be stable 

0sinˆcos4cos8cos444 2222222222222   Ukhkkkvhkkh  

 =1/2 , then it coincides with Crank-Nicolson method, and the scheme is seen to be 

unconditionally stable by the following inequality 

0)1(cos4 2  kvh  

After some rudimentary arithmetic operations, we see that the stability condition  

1g   is satisfied by the following inequality: 
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thus we conclude that the linearized scheme is unconditionally stable. 
 

4. Numerical results 

 

           In order to test the applicability of the present method, a test problem has 

been used in the present study, and the numerical results of the equation have been 

obtained and all computations have been run on a Pentium i7 PC in the FORTRAN 

code using double precision arithmetic. To show the accuracy of the results, both 

the error norm L2  
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have been calculated and presented. 

The exact solution of the modified Burgers equation is as follows [9]  
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where  c0  is a constant,  0< c0 <1  and t0=1.  

          During numerical computations, for the numerical solution of the test 

problem two different linearization techniques have been applied. For reasons of 

comparison with the relevant results in [11,14,15] the values of the error norms  L2  

and  L∞  have been computed at times  t=2,6,10  for different values of  h, and  t  

and c0=0.5. Table 1 compares the error norms L2 and L∞ of the present study with 
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those of other studies for h=0.005, =0.01 and t=0.01 at times t=2, 6 and 10.  In 

order to see the behavior of the wave in a wider range, the solution domain of the 

test problem has also been taken as [0, 1.3]. Table  2  compares the error norms  L2  

and  L∞  of the present study with those of other studies for  h=0.005, =0.005  and 

t=0.010  at the same time levels .   While Table  3  compares the error norms  L2  

and  L∞  of the present study with those of other studies for  h=0.005, =0.001  and 

t=0.01,  Table  4  makes a comparison of the same error norms for  h=0.02,   

=0.01  and t=0.01  at times  t=2,6  and  10. As seen from the tables, the obtained 

results using both of the two linearization techniques are in good agreement with 

those available in the literature.  

           Since the graphs of the numerical solutions obtained using Linearization I 

and Linearization II would be indiscriminately similar to each other, we have 

presented the graphs of Linearization I. The computed numerical results together 

with their errors are graphed in Figures 1 - 3 for various values of  at different 

time levels of Linearization for  =1/2  . But the graphs of the errors have only 

been drawn at time t=10. It can be seen that the maximum error happens at the 

right-hand boundary of the solution domain for =0.01.  However, the errors for 

=0.005 and =0.001 have been recorded around the points where the waves get 

their highest amplitudes. The solution profiles clearly show that the computed 

solutions display correct physical behavior for different values of t. 

         One can easily conclude from the tables and graphs that the linearization 

schemes used in the present paper produce as good as or better results found in the 

related articles. Due to the simplicity of the method and its applicability to 

computer software, the method results in much better solutions in relatively low 

costs in terms of time and space. The figures drawn at different time levels and the 

tables comparing the results of both the present and related articles show the 

accuracy of the linearization schemes.  

 
Table1. Comparison of the error norms L2 and L∞ with those in other studies in the 

literature at t=2, 6, 10 for h=0.005, t=0.01 and =0.01. 

 
  2=t    6=t    10=t   

 L2 x 103 L∞ x 103 L2 x 103 L∞ x 103 L2 x 103 L∞ x 103 

Lin. I (=0, 

t=0.001) 
0.37876 0.81658 0.32614 0.52579 0.54709 1.28125 

Lin. I (=1) 0.39173 0.83206 0.32699 0.52579 0.54720 1.28125 

Lin. I (=1/2) 0.37988 0.81793 0.32621 0.52579 0.54711 1.28125 

Lin. II (=0, 

t=0.001)  
0.37860 0.81558 0.32585 0.52579 0.54694 1.28125 

Lin. II (=1)  0.39160 0.83109 0.32670 0.52579 0.54705 1.28125 

Lin. II (=1/2)  0.37972 0.81693 0.32592 0.52579 0.54695 1.28125 

[10]  0.52308 1.21698 0.49023 0.72249 0.64007 1.28124 
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[11]  0.79043 1.70309 0.57672 0.76105 0.80026 1.80329 

[13],(SBCM1)  0.38489 0.82934 - - 0.54826 1.28127 

[13], (SBCM2)  0.39078 0.82734 - - 0.54612 1.28127 

Lin. I (=0, 

t=0.001),[0,1.3]  
0.37876 0.81658 0.27641 0.46536 0.25408 0.32464 

Lin. I (=1), [0,1.3] 0.39173 0.83206 0.27683 0.46760 0.25404 0.32517 

Lin. I (=1/2), 

[0,1.3] 
0.37988 0.81793 0.27645 0.46556 0.25408 0.32470 

Lin. II (=0, 

t=0.001), [0,1.3] 
0.37860 0.81558 0.27609 0.46487 0.25385 0.32433 

Lin. II (=1), [0,1.3] 0.39160 0.83109 0.27651 0.46712 0.25380 0.32485 

Lin. II (=1/2), 

[0,1.3] 
0.37972 0.81693 0.27612 0.46506 0.25385 0.32438 

[13], (SBCM1), 

[0,1.3] 
0.38489 0.82934 - - 0.25586 0.32723 

[13], (SBCM2), 

[0,1.3] 
0.39078 0.82734 - - 0.25259 0.32337 

 

Table 2. Comparison of the error norms L2 and L∞ with those in other studies in the 

literature at t=2, 6, 10 for h=0.005, t=0.001 and =0.005. 

  2=t    6=t    10=t   

 L2 x 103 L∞ x 103 L2 x 103 L∞ x 103 L2 x 103 L∞ x 103 

Lin. I (=0) 0.22647 0.58022 0.16470 0.33003 0.13967 0.22897 

Lin. I (=1) 0.22785 0.58228 0.16474 0.33032 0.13965 0.22902 

Lin. I 

(=1/2) 

0.22716 0.58125 0.16472 0.33017 0.13966 0.22899 

Lin. II 

(=0) 

0.22638 0.57952 0.16450 0.32969 0.13953 0.22874 

Lin. II 

(=1) 

0.22776 0.58159 0.16454 0.32997 0.13950 0.2288 

Lin. II 

(=1/2)  

0.22707 0.58055 0.16452 0.32983 0.13951 0.22877 

[10]  0.25786 0.72264 0.22569 0.43082 0.18735 0.30006 

[13], 

(SBCM1)  

0.22890 0.58623 - - 0.14042 0.23019 

[13], 

(SBCM2)  

0.23397 0.58424 - - 0.13747 0.22626 

 

Table 3. Comparison of the error norms L2 and L∞ with those in other studies in the 

literature at t=2, 6, 10 for h=0.005, t=0.01 and =0.001. 

  2=t    6=t    10=t   

 L2 x 103 L∞ x 103 L2 x 103 L∞ x 103 L2 x 103 L∞ x 103 

Lin. I (=0) 0.06696 0.25843 0.04942 0.14780 0.04072 0.10262 
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Lin. I (=1) 0.07115 0.26758 0.04954 0.14903 0.04063 0.10282 

Lin. I (=1/2) 0.06901 0.26300 0.04947 0.14841 0.04067 0.10272 

Lin. II (=0) 0.06693 0.25812 0.04936 0.14765 0.04067 0.10252 

Lin. II (=1) 0.07112 0.26728 0.04948 0.14888 0.04058 0.10272 

Lin. II 

(=1/2)  

0.06898 0.26270 0.04941 0.14826 0.04063 0.10262 

[10]  0.06703 0.27967 0.06046 0.17176 0.05010 0.12129 

[11]  0.18355 0.81862 0.08142 0.21348 0.05512 0.13943 

[13], 

(SBCM1)  

0.06843 0.26233 - - 0.04080 0.10295 

[13], 

(SBCM2)  

0.07220 0.25975 - - 0.03871 0.09882 

 

Table 4. Comparison of the error norms L2 and L∞ with those in other studies in the 

literature at t=2, 6, 10 for h=0.02, t=0.01 and =0.01. 

 

  

 
Figure 1. The numerical solutions of Problem at different times with v = 0.01 using 

Linearization I for θ = 1/2, and error graph at t = 10. 

 

  2=t    6=t    10=t   

 L2 x 103 L∞ x 103 L2 x 103 L∞ x 103 L2 x 103 L∞ x 103 

Lin. I (=0) 0.37583  0.81044  0.32969  0.52579  0.55871  1.28125  

Lin. I (=1) 0.39957  0.84143  0.33123  0.52579  0.5589  1.28125  

Lin. I (=1/2) 0.38746  0.82525  0.33042  0.52579  0.55880  1.28125  

Lin. II (=0) 0.37517  0.80634  0.32854  0.52579  0.55812  1.28125  

Lin. II (=1) 0.39911  0.83767  0.33011  0.52579  0.55832  1.28125  

Lin. II (=1/2)  0.38690  0.82148  0.32928  0.52579  0.55821  1.28125  

[11]  0.79043  1.70309  0.51672  0.76105  0.80026  1.80239  

[13], (SBCM1)  0.38474  0.82611   -   -  0.55985  1.28127  

[13], (SBCM2)  0.41321  0.81502   -   -  0.55095  1.28127  
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Figure 2. The numerical solutions of Problem at different times with v = 0.005 

using Linearization I for θ = 1/2, and error graph at t = 10. 

 

 

 

Figure 3. The numerical solutions of Problem at different times with v = 0.001 

using Linearization I for θ = 1/2, and error graph at t = 10. 

 

 

5. Conclusions 

 

         In this paper, a numerical treatment of the modified Burgers equation using 

two different  linearization has been presented. To show the accuracy and 

efficiency of the presented method, it has been applied to a problem and a 

comparison has been made with the relevant ones in the literature. For error 

analysis, both of the error norms L2 and L∞ have been computed and presented in 

tabular form. It has been seen from the obtained results that the error norms are 

sufficiently small during all computer runs. In conclusion, it can be said that the 

present method is a particularly successful numerical scheme for solving the 

Modified Burgers equation. 
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Xətti sonlu fərqlər üsulunun köməyi ilə modifikasiya olunmuş Bürgers 

tənliyinin ədədi həlli 

 

Y. Ucar, N.M. Yağmurlu, S. Qülbahar, E.G. Köşe  

 

XÜLASƏ 

 
 Məqalədə modifikasiya olunmuş Bürgers tənliyinin ədədi həllini almaq üçün iki 

fərqli xəttiləşdirmə üsuluna əsaslanan sonlu fərqlər üsulu təklif olunmuşdur. Furyenin 

dayanıqlı analiz üsulunun tətbiqi və xətaların normalarının hesablanması göstərir ki, 

kompüter hesablamalarından alınmış nəticələr ədəbiyyatdan götürülmüş uyğun nəticələrlə 

uzlaşır. Təklif olunan metodun digərləri ilə müqayisədə üstünlüyünü göstərmək üçün ədədi 

misaldan istifadə olunmuşdur. 

Açar sözlər: modifikasiya olunmuş Bürgers tənliyi, sonlu fərqlər metodu, 

dayanıqlı Furye analizi. 

 

Численное решение модифицированного уравнения  Бюргерса с 

помощью линеаризованных  конечных  разностных методов 

 

Ю. Уджар,   Н.М. Ягмур, С. Гюлбахар, Э.Г. Коше  

 

РЕЗЮМЕ 

 
В статье предложены конечные разностные методы, основанные на двух 

различных методах линеаризации для получения численного решения 

модифицированного уравнения Бюргерса. Применение метода анализа устойчивости 

Фурье и вычисление норм ошибок показали, что результаты, полученные из 

компьютерных вычислений совместимы с соответствующими им результатами в 

литературе. Числовой пример был использован, чтобы показать применение и 

точность предлагаемого способа по сравнению с другими. 

Ключевые слова: модифицированное уравнение Бюргерса, метод конечных 

разностей, анализ устойчивости Фурье. 

 

 

 


