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Abstract. In this article, we propose finite difference methods based on two different
linearization techniques in order to obtain numerical solutions of the modified Burgers
equation. The application of Fourier stability analysis method and computation of the error
norms L, and L_ have shown that the results obtained from the computer runs are

compatible with the relevant ones in the literature. A numerical example has been used to
show the application and accuracy of the proposed method in comparison to other ones.
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1. Introduction

First of all, Bateman [1] has introduced and studied Burgers equation and
also shown that the equation is worth to study. But after its first introduction by
Bateman, the equation has been widely studied in detail by Burgers in [2,3] as a
mathematical model for turbulence and therefore the equation has been widely
known with his name. The equations has been so fundamental in engineering and
other scientific fields that it has found many applications in such diverse fields of
science as convection and diffusion, number theory, gas dynamics, heat
conduction, elasticity etc. [17]. Today, it still preserves its place and importance in
the literature due to its accurate modeling of many physical phenomena.

The one-dimensional generalized Burgers equation is given in the form of

u, +ufu, —w,, =0, as<x<b,t>0

where u=u(x,t) is a function of the space and time variables respectively denoting
the velocity, v denotes a positive constant showing the kinematic viscosity of the
fluid, and p denotes a positive parameter. If we choose p=1 and p=2 we get
Burgers equation and modified Burgers equation, respectively.

In the past a few years, many authors have tried several schemes and
techniques in order to obtain both the analytical and numerical solutions of the
equation. Among others, Benton and Platzman [4] have obtained its analytical
solution; Miller [miller] has derived infinite series solutions of the problem. As for
the numerical ones, among many other studies conducted in the literature, Dag et
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al. have used B-spline collocation methods for numerical solutions of the Burgers
equation, (see [8] and the references therein).

In this paper, a variation form of the Burgers equation is going to be taken into
consideration that is the modified Burgers equation, presented in the form of

u +u’u, —w, =0, a<x<b, (1)

here u(x,t) denotes the dependent variable, v denotes the viscosity parameter, and
t and x denote the independent parameters, namely time and space, respectively.

In this paper we aim to apply the finite difference methods in order to build a
numerical method for the numerical solutions of the modified Burgers equation.
Several authors have tried to solve Eq. (1) both analytically and numerically using
various schemes. As for the numerical one, among others available in the literature,
Ramadan and El-Danaf [14] have solved the problem by using the collocation
method with quintic splines. After that, the same equation has been numerically
solved by Ramadan et al. [15] using the collocation method but now with septic
splines. The Burgers and modified Burgers equations have been solved by Saka
and Dag [18] with the application of time and space splitting techniques and then
employed the quintic B-spline collocation procedure to approximate the resulting
systems. Irk [11] has employed Crank-Nicolson central differencing scheme for the
time integration and sextic B-spline functions for the space integration to the
modified and time splitted modified Burgers equation. A numerical solution has
been proposed by Temsah [19] for the convection-diffusion equation using EI-
Gendi method with interface points and then numerical results for Burgers and
modified Burgers equations have been shown. Grienwank and El-Danaf [12] have
proposed a non-polynomial spline based method to obtain numerical solutions of
the non-linear modified Burgers equation. Bratsos [5] has used a finite-difference
scheme based on rational approximations to the matrix-exponential term in a two-
time level recurrence relation for the numerical solution of the modified Burgers
equation. Bratsos [6] has presented a finite-difference scheme based on fourth-
order rational approximants to the matrix-exponential term in a two-time level
recurrence relation for the numerical solution of the modified Burgers equation.
Bratsos and Petrakis [7] have used an explicit finite difference scheme based on
second-order rational approximations to the matrix-exponential term for the
numerical solution of the modified Burgers equation. The equation has been
numerically solved by Roshan and Bhamra [16] by the Petrov-Galerkin method
using a linear hat function as the trial function and a cubic B-spline function as the
test function.

During the solution process of the numerical example, the boundary
conditions related to Eq. (1) are going to be

u(a,t) =4, u(b,t) = 4,, t>t,.
The accuracy of the present method with the first and second linearization
techniques is going to be tested using a numerical example and their stability
analysis is investigated separately.
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The layout of the present paper is as follow. In Section 2, the fundamentals of the
finite difference method have been explained. In sections 3 and 4, two different
linearization techniques have been applied to modified Burgers equations. In
Section 5, the stability analysis of the method has been discussed. In Section 6,
numerical examples have been presented to illustrate the application of the
proposed method. The conclusion is given in Section 7 by summarizing the method
and its numerical results.

2. The finite difference method

In order to obtain numerical solutions, the solution region of the problem
R=[a,b]x[to] together with its boundary OR composed of points x=a and x=b
and t=to is covered by M equal subintervals of length h=(b-a)/M by the line
Xm=a+mh, m=0 (1) M and time t>to is incremented in steps of size k by the line
t=totnk, n=0(1)N. For the numerical solution of Eg. (1) ata given mesh point
(mh, nk) is going to be replaced by u(mh,nk) and its approximating difference

scheme is going to be replaced by Un .

Substituting the dependent variable and its derivatives with their
approximated values by the finite difference approximation and then applying Eq.
(1) at each mesh point of the region result in either a single explicit equation or a
system of difference equations generally written in a matrix-vector form. However,
when it is applied to non-linear problems, it generally results in non-linear system
of equations and those systems might not be solved directly. Thus, to overcome
this inconvenience an appropriate numerical algorithm is used to solve those
systems.

Linearization I:

If we use the forward difference approximation in place of u; and the weighted
central difference approximation in place of u. in Eg. (1) at each mesh point
denoted by (m,n+1),

U:1+1 _Ur:
u, = —"——m,
k
and
1 n+ N+ n+ n n n
u, = F(6>(u MU e UM ) (- 0)U, — 20! Ul )
respectively, and finally apply the following linearization technique in place of the

_ 2
non-linear term U~ Ux

n n 2 n+ n+ n n
u2uX Um+Um+l 0 Um+i+Um—1 +(1_0) Um+l+Um—l
2 2h 2h

we simply result in the following system of algebraic equations

N
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_ n n 2_ 2
uril o h(um+u2m+1) 8y curifo h +22kv6’ N
8h kh
n n 2 n n 2
e H(h(um+um+1) —SVNU;l[(l_e)(h(um+um+l) +SVN+ @

8h? 8h?

U;[g[hz _gkvz(l—e)ﬁ+unq+l[(19)[ h(u; +u2n:+1) +8VD
kh =

The Eq. (2) will be solved with the usage of a proper algorithm for those values of
0 (6=0,1/2,1).

Linearization 11:
If we use the forward difference approximation in place of u: and the
weighted central difference approximation in place of ux in Eq. (1) at each mesh

point denoted by (m,n+1),
Up'-Uy
u, = ——-
k

and

U, = (ot —2umt surt) e a-g)un, —2un +ur )

Xx = F m+1 m+1

respectively, and then apply the following linearization technique in place of the
non-linear term u2uy

n n 2 n+l _ pn+l n n
UZUX ~ Um—1+Um o Um+l Um—l +(1_0) Um+l+Um—l
2 2h 2h

we simply result in the following system of algebraic equations

n n ¥ 2
url g —h m71+l2Jm) “8r |, yoaf W4 2k00)
8h kh
n n 2 n n
U;ﬁ[e(h(umﬁum) —SVDZU;1£(1_0)[h(um1+um)2+8vn+ @A)

8h? 8h?

u;[a(hz —2kv2(1—9)D+U:H{(1_9)(—h(U;_l+tJnﬂ)2 +8VJ}
kh gh

The Eq. (3) will be solved using a proper algorithm for those values of 6
(6=0,1/2,1).
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3. Stability analysis

Following the Fourier method of analyzing stability and using &9 as the
amplication factor, the growth factor of a typical Fourier mode can be described as:
U, =g @)
where  1=+/—1 . To proceed inspecting the stability of the numerical scheme,

2
the nonlinear term  Y"Ux in the modified Burgers equation is linearized by
assuming the quantity u? as a local constant. In that case, the nonlinear term in the

equation changes into LjuX and thus the Eq. (1) becomes
u +Uu, —w, =0.
If the weighted average approximation is taken as follows

n+1 n n+1 n+l n n
[Um k_Um]_FU\[@[Umﬁ-lz_hUm—lj_i_(l_@)[ m+12_hUm—1jj_
®)

o0z -2y +Ug )+ @010, - 202 +U2 ) <0

m+1 m-1

th
then the generalized M~ row of Eqg. (5) becomes

Ut - S Jrup (L2 euz 512 -
2h h k h 2h h

ur 1-o)J +V(1_9)J+Un(£_2\/(1_0)j+ ©)

2h h? "k R
ur @0V +v(1—29) |
2h h

If we substitute the Fourier mode (4) into this linearized recursive relationship,
then (6) yields

a—ib
= , 7
c—id )
where
a=h?—2kv + 2kvéd — 2kv (6 —1) cos ¢,
b =—khU (6 —1)sin ¢,
(0-Dsing ®

¢ =h®+2kvO - 2kvOcos ¢,

d = —khU@sin ¢.
It is time to investigate three different conditions of 6. If we take:
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6=0 , then it coincides with explicit method, and it is required to satisfy the
following inequality for the stability condition

h* — (h? — 2kv + 2kvcos g)? —h*kU?sin? ¢ > 0

6=1 , then it corresponds to implicit method, and it is required to satisfy the
following inequality for the system to be stable

4h%kv + 4k?v? — 4h?kvcos ¢ — 8k212 cos ¢ + 4k 22 cos? ¢ + h*k U 2sin? ¢ > 0
0=1/2 , then it coincides with Crank-Nicolson method, and the scheme is seen to be
unconditionally stable by the following inequality

—4h*kv(cos¢—1) >0

After some rudimentary arithmetic operations, we see that the stability condition
|g|<1 is satisfied by the following inequality:

2
¢’ +d*—a’ —b® =96h*At(2 + cos¢)sin{g >0
thus we conclude that the linearized scheme is unconditionally stable.
4. Numerical results

In order to test the applicability of the present method, a test problem has
been used in the present study, and the numerical results of the equation have been
obtained and all computations have been run on a Pentium i7 PC in the FORTRAN
code using double precision arithmetic. To show the accuracy of the results, both
the error norm L.

2
’

N
L, ZU_UN:\/hZuJ -(Uy);
i—0

and the error norm L.,
L, = Hu _UNHm = max\uj _(UN)J'"
J

have been calculated and presented.
The exact solution of the modified Burgers equation is as follows [9]
x/t

1+t /e exp(x2/4mt)’

where cg is a constant, 0< cp<1 and to=1.
During numerical computations, for the numerical solution of the test

problem two different linearization techniques have been applied. For reasons of

comparison with the relevant results in [11,14,15] the values of the error norms L,

and L. have been computed at times t=2,6,10 for different values of h,v and At
and co=0.5. Table 1 compares the error norms L2 and L., of the present study with

u(x,t) =

t>t, 0<x<1
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those of other studies for h=0.005, v=0.01 and At=0.01 at times t=2, 6 and 10. In
order to see the behavior of the wave in a wider range, the solution domain of the
test problem has also been taken as [0, 1.3]. Table 2 compares the error norms L,
and L., of the present study with those of other studies for h=0.005, v=0.005 and

At=0.010 at the same time levels -+ While Table 3 compares the error norms L,
and L. of the present study with those of other studies for h=0.005, v=0.001 and
At=0.01, Table 4 makes a comparison of the same error norms for h=0.02,
v=0.01 and At=0.01 at times t=2,6 and 10. As seen from the tables, the obtained
results using both of the two linearization techniques are in good agreement with
those available in the literature.

Since the graphs of the numerical solutions obtained using Linearization |
and Linearization 1l would be indiscriminately similar to each other, we have
presented the graphs of Linearization I. The computed numerical results together
with their errors are graphed in Figures 1 - 3 for various values of v at different
time levels of Linearization for 6=1/2 . But the graphs of the errors have only
been drawn at time t=10. It can be seen that the maximum error happens at the
right-hand boundary of the solution domain for v=0.01. However, the errors for
v=0.005 and v=0.001 have been recorded around the points where the waves get
their highest amplitudes. The solution profiles clearly show that the computed
solutions display correct physical behavior for different values of t.

One can easily conclude from the tables and graphs that the linearization
schemes used in the present paper produce as good as or better results found in the
related articles. Due to the simplicity of the method and its applicability to
computer software, the method results in much better solutions in relatively low
costs in terms of time and space. The figures drawn at different time levels and the
tables comparing the results of both the present and related articles show the
accuracy of the linearization schemes.

Tablel. Comparison of the error norms L, and L. with those in other studies in the
literature at t=2, 6, 10 for h=0.005, At=0.01 and v=0.01.

t=2 t=6 t=10

Lox10%® |L,x10%|Lyx10%| L,x10%® | Lyx10®|Lsx103
Lin. 1 (0=0,
At=0.001) 0.37876 | 0.81658 | 0.32614 0.52579 0.54709 | 1.28125
Lin. 1 (6=1) 0.39173 | 0.83206 | 0.32699 0.52579 0.54720 | 1.28125
Lin. 1 (6=1/2) 0.37988 | 0.81793 | 0.32621 0.52579 0.54711 | 1.28125
Lin. 11 (0=0,
At=0.001) 0.37860 | 0.81558 | 0.32585 0.52579 0.54694 | 1.28125
Lin. 11 (6=1) 0.39160 | 0.83109 | 0.32670 0.52579 0.54705 | 1.28125
Lin. 11 (6=1/2) 0.37972 | 0.81693 | 0.32592 0.52579 0.54695 | 1.28125
[10] 0.52308 | 1.21698 | 0.49023 0.72249 0.64007 | 1.28124
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[11] 0.79043 | 1.70309 | 0.57672 | 0.76105 | 0.80026 | 1.80329
[13],(SBCM1) 0.38489 | 0.82934 - - 1054826 | 1.28127
[13], (SBCM?2) 0.39078 | 0.82734 - - | 054612 | 1.28127
Lin. |  (0=0,

At=0.001),[0,1.3] 0.37876 | 0.81658 | 0.27641 | 0.46536 | 0.25408 | 0.32464
Lin. 1 (6=1),[0,1.3] | 0.39173 | 0.83206 | 0.27683 | 0.46760 | 0.25404 | 0.32517

[Lomi 3]' (0=172) 37988 | 0.81793 | 0.27645 | 0.46556 | 0.25408 | 0.32470
Lin. 1l (0=0,

At=0.001), [0,1.3] 0.37860 | 0.81558 | 0.27609 | 0.46487 | 0.25385 | 0.32433

Lin. Il (6=1), [0,1.3]| 0.39160 | 0.83109 | 0.27651 | 0.46712 | 0.25380 | 0.32485

[Lc;”l' 3 I (0=172)) 37972 | 0.81693 | 0.27612 | 0.46506 | 0.25385 | 0.32438
%31]‘3] (SBEMD), 038489 | 0.82034 i ~ | 0.25585 | 0.39723
%31]‘3] (SBEM2), 939078 | 0.82734 . - | 0.25259 | 0.32337

Table 2. Comparison of the error norms L, and L., with those in other studies in the
literature at t=2, 6, 10 for h=0.005, At=0.001 and v=0.005.

t=2 t=6 t=10

L, x 108 L., x 108 L, x 108 Lox10% | Lpx10® | L, X108
Lin. 1 (6=0)| 0.22647 0.58022 0.16470 0.33003 [0.13967 [0.22897
Lin. 1 (6=1)| 0.22785 0.58228 0.16474 0.33032 [0.13965 [0.22902
Lin. I| 0.22716 0.58125 0.16472 0.33017 (0.13966 [0.22899
(0=1/2)
Lin. Il 0.22638 0.57952 0.16450 0.32969 (0.13953 |0.22874
(6=0)
Lin. Il 0.22776 0.58159 0.16454 0.32997 (0.13950 |0.2288
(6=1)
Lin. I 0.22707 0.58055 0.16452 0.32983 [0.13951 |0.22877
(0=1/2)
[10] 0.25786 0.72264 0.22569 0.43082 (0.18735 |0.30006
[13], 0.22890 0.58623 - - 10.14042 |0.23019
(SBCM1)
[13], 0.23397 0.58424 - - 0.13747 (0.22626
(SBCM2)

Table 3. Comparison of the error norms L, and L., with those in other studies in the
literature at t=2, 6, 10 for h=0.005, At=0.01 and v=0.001.

t=2 t=6 t=10

L, x 108 L., x 103 L, x 108 L,x10% | Lpx10°® | L, x10°

Lin. 1 (6=0) 0.06696 0.25843 0.04942 0.14780 | 0.04072 | 0.10262
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Lin. 1 (0=1) | 007115 | 0.26758 | 0.04954 | 0.14903 | 0.04063 | 0.10282
Lin. 1 (0=1/2)] 0.06901 | 0.26300 | 0.04947 | 0.14841 | 0.04067 | 0.10272
Lin. 11 (6=0) | 0.06693 | 0.25812 | 0.04936 | 0.14765 | 0.04067 | 0.10252
Lin. 11 (6=1) | 007112 | 026728 | 004948 | 0.14888 | 0.04058 | 0.10272
Lin. I 0.06898 | 0.26270 | 0.04941 | 0.14826 | 0.04063 | 0.10262
(0=1/2)
[10]| 006703 | 0.27967 | 0.06046 | 0.17176 | 0.05010 | 0.12129
[11]| 018355 | 0.81862 | 0.08142 | 0.21348 | 0.05512 | 0.13943
[13], 0.06843 | 0.26233 - - 170.04080 | 0.10295
(SBCM1)
[13], 007220 | 0.25975 - -170.03871 | 0.09882
(SBCM2)

Table 4. Comparison of the error norms L, and L. with those in other studies in the
literature at t=2, 6, 10 for h=0.02, At=0.01 and v=0.01.

t=2 t=6 t=10
L, x 108 L., x 10° L, x 108 L,x10% | Lox10° | L,x10°
Lin. I (6=0) 0.37583 0.81044 0.32969 0.52579 0.55871 1.28125
Lin. 1 (6=1) 0.39957 0.84143 0.33123 0.52579 0.5589 1.28125
Lin. 1 (6=1/2) 0.38746 0.82525 0.33042 0.52579 0.55880 1.28125
Lin. 1l (6=0) 0.37517 0.80634 0.32854 0.52579 0.55812 1.28125
Lin. Il (6=1) 0.39911 0.83767 0.33011 0.52579 0.55832 1.28125
Lin. Il (6=1/2) 0.38690 0.82148 0.32928 0.52579 0.55821 1.28125
[11] 0.79043 1.70309 0.51672 0.76105 0.80026 1.80239
[13], (SBCM1) [0.38474  [0.82611 - - 0.55985 [1.28127
[13], (SBCM2) [0.41321 _ [0.81502 - - 0.55005  [1.28127

Figure 1. The numerical solutions of Problem at different times with v = 0.01 using
Linearization I for 6 = 1/2, and error graph at t = 10.
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0.0002

0.00015

Figure 2. The numerical solutions of Problem at different times with v = 0.005
using Linearization I for 8 = 1/2, and error graph at t = 10.

0.00012

Figure 3. The numerical solutions of Problem at different times with v = 0.001
using Linearization I for 6 = 1/2, and error graph at t = 10.

5.  Conclusions

In this paper, a numerical treatment of the modified Burgers equation using
two different linearization has been presented. To show the accuracy and
efficiency of the presented method, it has been applied to a problem and a
comparison has been made with the relevant ones in the literature. For error
analysis, both of the error norms L2 and L., have been computed and presented in
tabular form. It has been seen from the obtained results that the error norms are
sufficiently small during all computer runs. In conclusion, it can be said that the
present method is a particularly successful numerical scheme for solving the
Modified Burgers equation.
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Xatti sonlu farqlar iisulunun kémayi ilo modifikasiya olunmus Biirgers
tonliyinin adadi hoalli

Y. Ucar, N.M. Yagmurlu, S. Qiilbahar, E.G. Kose

XULASO

Mogqalods modifikasiya olunmus Biirgers tonliyinin odadi hallini almaq ii¢iin iki
forqli xottilogdirmo {isuluna osaslanan sonlu forqlor iisulu toklif olunmusdur. Furyenin
dayanigli analiz iisulunun totbiqi vo xotalarin normalarinin hesablanmasi gostorir ki,
kompiiter hesablamalarindan alinmis noticolor adobiyyatdan gotiiriilmiis uygun noticolorlo
uzlagir. Toklif olunan metodun digorlari ilo miiqayisads stiinlitylinii gdstormoak {igiin adadi
misaldan istifado olunmusdur.

Acar sozlor: modifikasiya olunmus Bilirgers tonliyi, sonlu forglor metodu,
dayaniqli Furye analizi.

YncseHHOe pelieHue MOAU(PUIMPOBAHHOIO YpaBHeHusi broprepca ¢
MOMOIIBIO JIMHEAPH30BAHHBIX KOHEYHBIX Pa3HOCTHBLIX METOI0B

IO. Yaxap, H.M. Armyp, C. I'onbaxap, I.I'. Kome
PE3IOME

B crarbe mpennoxeHbl KOHEUHBIE PA3HOCTHBIE METObI, OCHOBaHHBIE Ha IBYX
pasNMYHBIX  METOAAX JIMHeapu3aluu Uil  [OJYy4YeHHs  YHCICHHOTO  pEIICHUs
MoIuHIMPOBAaHHOTO ypaBHeHHs broprepca. [Ipumenenne meTona aHanus3a yCTOWIHBOCTH
@yppe U BBIYHCICHHE HOPM OIIMOOK ITOKAa3ald, YTO pE3YNIbTaThl, IONy4YCHHBIE W3
KOMIIBIOTEPHBIX BBIUMCIEHHH COBMECTHMBI C COOTBETCTBYIONIMMH WM pE3yJIbTaTaMH B
mutepatrype. UnmcnoBoll mpuMep OBLI HCIONB30BaH, YTOOBI TOKa3aTh MPUMEHEHHE U
TOYHOCTH NPEJIaraeMoro crnocoda 1o CpaBHEHUIO C IPYTUMH.

KiroueBble ciioBa: MoanHUIIMPOBaHHOE ypaBHEHHE broprepca, MeTo1 KOHEYHBIX
pasHocTel, ananu3 ycroitunBoctu dypee.
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